If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-5x-96=0
a = 1; b = -5; c = -96;
Δ = b2-4ac
Δ = -52-4·1·(-96)
Δ = 409
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{409}}{2*1}=\frac{5-\sqrt{409}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{409}}{2*1}=\frac{5+\sqrt{409}}{2} $
| 6x–21=5x+17+x | | 3x^+4=22 | | 7(x+5)=5x-7(7-2x) | | 5x(x-8)=-50 | | 5.36-7y=58 | | 2=4(v-4)-7v | | 3.5x−7=18 | | 5x-12=67 | | -3.1d+15.5=9.3 | | 2+3.50x=3+4.50 | | )x/7-5=11 | | x+x-27=67 | | -3+4+16a=-127 | | 48-9x=-6x-18 | | 3n-8=9/5 | | -4+n=23 | | 5x-9+2x+15+90=180 | | 0=-5|p| | | 2-(4x+6)=3x+7x+10 | | 2+3.50x=3+450 | | 3y+1+3y-1=180 | | 5x(x-8)=(-50) | | -5(s-30=-10) | | 2/3(6-9)=-1/5(15x+10) | | 30/(x-5)=10 | | q/3+-17=-19 | | x+x+x+2+3x-3x=31 | | 4(x–3)+40=64–3(x–2) | | (x+2)/2-3=x+4 | | 4−2x5+3=9 | | 1.5x+1.5(x-3)+1.5•3(x-3)=117 | | 8x-14=4x+44 |